Программа по химии:

Часть I. Основы теоретической химии.

1. Основные понятия химии.

Вещество, молекула, атом, химический элемент. Относительная атомная и молекулярная масса. Моль. Молярная масса. Химические превращения. Стехиометрия.

- 2. Строение Химическая атома. связь. Строение вещества. Строение атома. Атомное ядро. Изотопы. Строение оболочек атомов. Электронные конфигурации атомов в основном и возбужденном состояниях. Периодический закон Д.И. Менделеева и его обоснование с точки зрения электронного строения атома. Периодическая система элементов. Химическая связь. Типы химической связи: ковалентная, ионная, металлическая, водородная. Механизм образования ковалентной связи: обменный и донорно-акцепторный. Электроотрицательность. Полярность связи. Кратные связи. Модель гибридизации орбиталей. Валентность И степень Структурные формулы. Изомерия. Агрегатные состояния вещества. Газы. Газовые законы. Уравнение Клапейрона-Менделеева. молярный объем. Жидкости. Твердые Авогадро, кристаллических решеток.
- 3. Основные классы кристаллических решеток. Индивидуальные вещества, смеси, растворы. Простые вещества, аллотропия; металлы и неметаллы. Основные классы неорганических веществ: оксиды, гидроксиды, кислоты, соли. Их классификация, номенклатура, основные способы получения и свойства. Амфотерность.
- **4. Основные закономерности протекания химических реакций.** Классификация химических реакций. Тепловые эффекты химических реакций. Термохимические уравнения. Скорость химической реакции и её зависимость от различных факторов. Явление катализа. Обратимые реакции. Химическое равновесие, условия его смещения. Принципы Ле Шателье.

5. Растворы.

Механизм образования растворов. Растворимость веществ. Способы выражения концентрации растворов. Массовая доля. Электролиты. Электролитическая диссоциация кислот, оснований, солей. Кислотно-основные взаимодействия в растворах. Степень диссоциации. Ионное произведение воды. Ионные уравнения. Гидролиз солей.

6. Окислительно-восстановительная реакция.

Важнейшие окислители и восстановители. Окислительновосстновительная двойственность. Определение стехиометрических коэффициентов в уравнениях окислительно-восстановительных реакций. Электролиз растворов и расплавов.

Часть II. Элементы и их соединения.

1. Неметаллы.

Водород. Его физические и химические свойства, получение. Соединения водорода с металлами и неметаллами.

2. Галогены, их сравнительная характеристика.

Хлор, бром, их физические и химические свойства, получение. Свойства и получение хлороводорода, хлоридов, гипохлоритов, хлоратов. Кислород, Его получение и химические свойства. Сера, её физические и химические свойства. Свойства и способы получения соединений серы: сероводорода и сульфидов; оксидов серы (IV) и (VI); сульфитов, серной кислоты и сульфатов. Азот. Аммиак, соли аммония, их свойства и получение. Оксиды азота. Азотистая и азотная кислоты и их соли; получение и свойства. Фосфор, физические и химические свойства, получение. Оксиды фосфора (III) и (V). Ортомето- и дифосфорные кислоты, их свойства. Углерод. Изотопы углерода. Его физические и химические свойства. Оксиды углерода (II) и (IV). Угольная кислота и её соли. Кремний. Оксид кремния IV. Кремниевые кислоты, силикаты.

3. Металлы. Общая характеристика металлов: физические и химические свойства. Способы получения металлов. Щелочные и щелочно-земельные металлы: их соединения, гидроксиды, соли. Свойства, получение. Алюминий. Оксид, гидроксид и соли алюминия. Химические свойства и получение. Хром. Оксиды хрома (II), (III) и (VI). Гидроксиды и соли хрома (II) и (III). Хроматы и дихроматы. Химические свойства, получение. Железо. Оксиды железа (II), (II-Ш) и (III). Гидроксиды железа и соли железа (II) и (III). Химические свойства и получение.

Часть III. Органическая химия.

1.Теоретические положения органической химии.

Структурная теория как основа органической химии. Функциональная группа. Гомологические ряды. Изомерия: структурная и пространственная. Взаимное влияние атомов в молекуле. Классификация органических соединений, номенклатура.

2.Углеводороды.

Алканы и циклоалканы. Алкены и диеновые углеводороды. Алкины. Ароматические углеводороды. Физические и химические свойства, способы получения. Ориентирующее действие заместителей в бензольном кольце.

3. Кислородсодержащие органические соединения.

Спирты одноатомные и многоатомные. Фенол. Физические и химические свойства этих соединений и способы их получения. Карбонильные соединения: альдегиды и кетоны. Физические и химические свойства, способы получения.

Карбоновые кислоты. Производные карбоновых кислот: соли, ангидриды, галогенангидриды, сложные эфиры, амиды. Жиры. Химические свойства и получение кислот.

4.Углеводы.

Моносахариды: рибоза, дезоксирибоза, глюкоза, фруктоза, галактоза. Строение и химические свойства. Дисахариды: целлюлоза, мальтоза, лактоза, сахароза. Полисахариды: крахмал и целлюлоза.

5. Азотосодержащие органические соединения.

Амины. Алифатические и ароматические амины. Основность аминов, химические свойства, получение.

Аминокислоты: глицин, аланин, цистеин, серии, фенилаланин, тирозин, лизин, глутаминовая кислота. Физические и химические свойства. Пептиды. Гетероциклические соединения: пиррол, пиридин. Пиримидиновые и пуриновые основания, входящие в состав нуклеиновых кислот. Представления о структуре нуклеиновых кислот.

6.Высокомолекулярные соединения. Реакция полимерации и поликонденсации. Отдельные типы высокомолекулярных соединений: полиэтилен, полипропилен, полистирол, поливинилхлорид, каучуки, полиметилакрилат, фенолформальдегидные смолы, понятие о искусственных и синтетических волокнах.